Finden Sie schnell befestigung für pv module für Ihr Unternehmen: 145 Ergebnisse

ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 195 mm Dicke: 11 Gewicht kg/ME: 4,22 Länge verwenden: 750 mm
ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 75 mm Dicke: 11 Gewicht kg/ME: 4,88 Länge verwenden: 2350 mm
ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 175 mm Dicke: 11 Gewicht kg/ME: 6,2 Länge verwenden: 1350 mm
ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 175 mm Dicke: 11 Gewicht kg/ME: 4,66 Länge verwenden: 950 mm
ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 135 mm Dicke: 11 Gewicht kg/ME: 3,82 Länge verwenden: 950 mm
ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 175 mm Dicke: 11 Gewicht kg/ME: 8,51 Länge verwenden: 1950 mm
ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 145 mm Dicke: 11 Gewicht kg/ME: 5,94 Länge verwenden: 1550 mm
ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 75 mm Dicke: 11 Gewicht kg/ME: 3,89 Länge verwenden: 1750 mm
ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 195 mm Dicke: 11 Gewicht kg/ME: 8,51 Länge verwenden: 1750 mm
ARMA-MAG HD

ARMA-MAG HD

ARMA-MAG HD Breite VERWENDEN: 175 mm Dicke: 11 Gewicht kg/ME: 6,97 Länge verwenden: 1550 mm
3M™ Finesse-it™ Polier System Box

3M™ Finesse-it™ Polier System Box

Ein mobiles System zum Entfernen von kleinen Kratzern bis hin zum perfekten Finish für lackierte Oberflachen, Acrylglas und Mineralstein.
ESA Expansionssaugarm

ESA Expansionssaugarm

Arbeitsplätze und Fertigungsanlagen ganz einfach reinigen! Expansionssaugarm für das schnelle und effiziente Entfernen von abgelagertem Staub. Der Expansionssaugarm ist eine ideale Erweiterung zentraler Staubsauganlagen. Er kann in ein bestehendes System mechanisch und steuerungstechnisch integriert werden. Der große Aktionsradius von bis zu 360°, (je nach Ausführung bis zu 8 Meter) führt zu einer erheblichen Erleichterung bei der Reinigung, zu merklich höheren Standzeiten der Produktionsanlage und besserer, gleichbleibender Qualität. Durch das einfache und intuitive Handling können die Produktionsanlagen ohne zusätzlichen Arbeitsaufwand zwischen den Arbeitsgängen gereinigt werden. Der freitragende ESA wird idealerweise im Bereich eines oder mehrerer Arbeitsplätze platziert und deckt dadurch die Schwenkung über den gesamten Arbeitsbereich ab – weniger Saugstellen führen zu einer großen Kostenersparnis. Der ESA verzichtet komplett auf außen liegende Saugschläuche – die hohe Flexibilität wird durch zwei, um 360 Grad drehbare und durchströmte Gelenke (in der Mitte und an der Montageplatte) erreicht. Aktiviert wird die Absaugung durch einfaches Abnehmen des Handsaugrohres am Ende des ESA. Nach Beendigung des Saugvorgangs sorgt ein speziell entwickeltes MOTEC-Kugelventil beim Einhängen des Saugrohrs automatisch für die Schließung des Luftstroms. Das garantiert die effiziente Nutzung der vorhandenen Saugleistung. Vorteile: • Großer Aktionsradius von bis zu 360° (je nach Ausführung bis zu 8 Metern) • Erhöhung der Standzeiten von Produktionsanlagen • Bessere, gleichmäßigere Qualität der Produkte • Zeitersparnis durch intuitives Handling • Kein Verschleiss durch Schleifen von Saugschläuchen • Vermeidung von Stolperstellen auf dem Boden
ATEX-Motoren-Klemmbretter

ATEX-Motoren-Klemmbretter

Ex-geschützt 690V und 1100V nach ATEX 100 mit Tellerbolzen
easy joint Zahnriemenverbinder

easy joint Zahnriemenverbinder

easy joint Zahnriemen-Verbinder sind die perfekte Lösung, zur schnellen und einfachen mechanischen Endlosverbindung von PU Zahnriemen. PU Zahnriemen mit easy joint, so stark wie eine verschweißte Verbindung easy joint Zahnriemen-Verbinder sind die perfekte Lösung, zur schnellen und einfachen mechanischen Endlosverbindung von PU Zahnriemen. Durch eine in die Zahnriemenenden eingeschweißte Polyurethane Gelenkachse werden Zahnriemen mit einem Edelstahl Pin endlos verbunden. Schnell und einfach. easy joint Zahnriemen-Verbinder können mit allen unseren Beschichtungen und Oberflächenbearbeitungen, sowie unseren Führungssystemen kombiniert werden. Die Zugfestigkeit und Standzeit ist höher als bei allen anderen mechanischen Zahnriemenverbindungs-systemen. Teilungen: H / T10 / AT10 / T20 / AT20 / 8M / 14M Standard: Polyurethane 90° Shore A grau Ausführungen: Standard, PAZ, PAR Zugstrang: ein Polymerzugstrang rundum den Pin in jedem Zahngelenk, parallel angeordnet Breite: von 10 bis 150mm, (Breitzahnriemen auf Anfrage möglich)
Neuheit: VARITECTOR PU ZPA zur Montage auf 40-mm-Stromschienen

Neuheit: VARITECTOR PU ZPA zur Montage auf 40-mm-Stromschienen

Blitz- und Überspannungsschutz auf kleinstem Raum integrieren Nach den Vorgaben der DIN VDE 0100-443 und -534 ist der Überspannungsschutz eine verpflichtende Komponente jeder Energieversorgung – insbesondere in Gebäudeinfrastrukturen. Für gewerblich wie privat genutzte Immobilien ist daher ein Überspannungsschutz vorzusehen. Unsere kompakten Blitzstromableiter Typ I/II für 3-phasige Stromversorgungsnetze sind optimal für den Einsatz in Gebäudeinfrastrukturen geeignet und lassen sich auf 40 mm Sammelschienen montieren. Sie ermöglichen eine direkte Kontaktierung der Stromschiene mit separatem PE-Anschluss und kombinieren auf nur 47 mm Typ I- und Typ II-Ableiter für Blitz- und Überspannungsschutz in einem Produkt. Der optionale Zusatzabgriff sowie der Fernmeldeausgang erhöhen den Mehrwert für viele Applikationen. Ihr besonderer Vorteil: - Platzsparende Bauform - Werkzeuglose Installation - Vollständige Statuskontrolle - Innovativer Zusatzabgriff Sie benötigen weitere Informationen? Kontaktieren Sie uns einfach direkt oder werfen Sie einen Blick auf unsere Homepage!
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer VeroClear RGD 810: Glatte Oberfläche, lange Haltbarkeit, lackierbar Nachteile:: Photopolymer VeroClear RGD 810: Nicht als Serienbauteil geeignet Farben:: Photopolymer VeroClear RGD 810: Transparent milchig Bauteilgenauigkeit:: Photopolymer VeroClear RGD 810: ~ 300 µm Zugfestigkeit RM:: Photopolymer VeroClear RGD 810: 50 - 65 MPa Max. Betriebstemperatur:: Photopolymer VeroClear RGD 810: 45 - 50 °C Härte:: Photopolymer VeroClear RGD 810: 83 Shore D Min. Wandstärke:: Photopolymer VeroClear RGD 810: 0,5 mm Schichtstärke:: Photopolymer VeroClear RGD 810: 0,016 mm Max. Bauraumgröße:: Photopolymer VeroClear RGD 810: 340 x 340 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-H1 ungetempert: Lange Haltbarkeit, lackier- und einfärbbar Nachteile:: Photopolymer AR-H1 ungetempert: Spröde Farben:: Photopolymer AR-H1 ungetempert: Transparent (Rotstich) Bauteilgenauigkeit:: Photopolymer AR-H1 ungetempert: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-H1 ungetempert: 16,1 – 31,4 MPa Max. Betriebstemperatur:: Photopolymer AR-H1 ungetempert: 72 °C Härte:: Photopolymer AR-H1 ungetempert: 87 Shore D Min. Wandstärke:: Photopolymer AR-H1 ungetempert: 1,5 mm Schichtstärke:: Photopolymer AR-H1 ungetempert: 0,02 mm Max. Bauraumgröße:: Photopolymer AR-H1 ungetempert: 297 x 210 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-H1 getempert: Lange Haltbarkeit, lackier- und einfärbbar Nachteile:: Photopolymer AR-H1 getempert: Spröde Farben:: Photopolymer AR-H1 getempert: Transparent (Rotstich) Bauteilgenauigkeit:: Photopolymer AR-H1 getempert: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-H1 getempert: 15,4 – 38,4 MPa Max. Betriebstemperatur:: Photopolymer AR-H1 getempert: 103 °C Härte:: Photopolymer AR-H1 getempert: 87 Shore D Min. Wandstärke:: Photopolymer AR-H1 getempert: 1,5 mm Schichtstärke:: Photopolymer AR-H1 getempert: 0,02 mm Max. Bauraumgröße:: Photopolymer AR-H1 getempert: 297 x 210 x 200 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer VeroWhite Plus RGD 835: Glatte Oberfläche, lange Haltbarkeit, lackierbar Nachteile:: Photopolymer VeroWhite Plus RGD 835: Nicht als Serienbauteil geeignet Farben:: Photopolymer VeroWhite Plus RGD 835: Weiß Bauteilgenauigkeit:: Photopolymer VeroWhite Plus RGD 835: ~ 300 µm Zugfestigkeit RM:: Photopolymer VeroWhite Plus RGD 835: 50 - 65 MPa Max. Betriebstemperatur:: Photopolymer VeroWhite Plus RGD 835: 45 - 50 °C Härte:: Photopolymer VeroWhite Plus RGD 835: 83 Shore D Min. Wandstärke:: Photopolymer VeroWhite Plus RGD 835: 0,5 mm Schichtstärke:: Photopolymer VeroWhite Plus RGD 835: 0,016 mm Max. Bauraumgröße:: Photopolymer VeroWhite Plus RGD 835: 302 x 280 x 150 mm
Polygraphie / Polyjet-/ Inkjet-Verfahren

Polygraphie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Tango Black FLX 973: Gummiartiges Aussehen und Eigenschaften Nachteile:: Tango Black FLX 973: Kann über die Zeit spröde werden Farben:: Tango Black FLX 973: Schwarz Bauteilgenauigkeit:: Tango Black FLX 973: ~ 300 µm Zugfestigkeit RM:: Tango Black FLX 973: 2 MPa Max. Betriebstemperatur:: Tango Black FLX 973: keine Angabe Härte:: Tango Black FLX 973: 61 Shore A Min. Wandstärke:: Tango Black FLX 973: 1 mm Schichtstärke:: Tango Black FLX 973: 0,016 mm Max. Bauraumgröße:: Tango Black FLX 973: 302 x 280 x 150 mm
Polygrafie / Polyjet-/ Inkjet-Verfahren

Polygrafie / Polyjet-/ Inkjet-Verfahren

Beim Polyjet Verfahren können Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden - formstabil und ohne Klebestellen. Polygrafie (Polygrafie, auch bekannt als Polyjet- oder Inkjet-Verfahren) ist ein 3D Druckverfahren bei dem Schicht für Schicht ein Photopolymer aufgebracht und anschließend mittels UV-Licht ausgehärtet wird. Im Detail: Das Bauteil wird durch einen Druckkopf, der ähnlich wie der Druckkopf eines Tintenstrahldruckers arbeitet, schichtweise aufgebaut. Damit es möglich ist, Überhänge an den Objekten zu drucken, wird Stützmaterial mitgedruckt. Deshalb verfügen die 3D-Drucker über zwei oder auch mehr Druckköpfe: Der eine druckt das Bau-, der andere das Stützmaterial. Schicht für Schicht werden die Konturen des Objekts auf der Bauplattform aufgespritzt. Als Material wird ein haltbares und formbeständiges Photopolymer (Kunstharz) verwendet. Das zunächst im Drucker flüssige Material verhärtet sich, wenn Schicht für Schicht nacheinander mit UV-Licht belichtet wird. Polygrafie / Polyjet Drucktechnik ermöglicht Ihnen die Herstellung detaillierter Objekte mit hohem Detailgrad und glatten Oberflächen. Duch das Schichtverfahren können bereits im Druckprozess Materialien unterschiedlicher ästhetischer, haptischer und physikalischer Eigenschaften verarbeitet werden.Die niedrigste erreichbare Schichtdicke in der z-Ebene beträgt 16 Mikron bei einer maximalen Bauraumgröße von 340 x 340 x 200 mm. Während des Druckes wird das Modell von Stützmaterial umhüllt, welches in der Nachbearbeitung vollständig entfernt wird. Vorteile:: Photopolymer AR-M2: Lange Haltbarkeit, flexibel, formstabil, lackier- und einfärbbar, hohe Festigkeit Nachteile:: Photopolymer AR-M2: Geringe Temperaturbeständigkeit Farben:: Photopolymer AR-M2: Transparent (Gelbstich) Bauteilgenauigkeit:: Photopolymer AR-M2: ~ 200 µm Zugfestigkeit RM:: Photopolymer AR-M2: 40 – 55 MPa Max. Betriebstemperatur:: Photopolymer AR-M2: 54 °C Härte:: Photopolymer AR-M2: 86 Shore D Min. Wandstärke:: Photopolymer AR-M2: 0,5 mm Schichtstärke:: Photopolymer AR-M2: 0,015 mm Max. Bauraumgröße:: Photopolymer AR-M2: 297 x 210 x 200 mm
Isolierte Stromschienen U15 | U25 | U35

Isolierte Stromschienen U15 | U25 | U35

In sämtlichen Industriebereichen müssen mobile Applikationen mit Energie versorgt werden. Krananlagen, Hafentechnik, Transportbahnen, Riesenräder, Aufzüge und Rolltore stellen dabei unterschiedliche Anforderungen an die Systeme. Die Leichtbauarten U15, U25 und U35 für Innen- und Außenanwendung sind aufgrund ihrer Einzelverlegung besonders wartungsfreundlich. Dank verschiedener Leitermaterialien sind sie flexibel und können hängend, seitlich oder vertikal verbaut werden. Auch Kurvenbahnen sind möglich. In Verbindung mit dem VAHLE Multi-Träger (VMT) oder dem VAHLE Trag-Profil (VTP) können die Aufhängeabstände und das Einsatzgebiet von U15 und U25 erweitert werden. Verschiedene Positionierungssysteme können integriert werden, um individuelle Kundenanforderungen zu erfüllen. Für die Elektrifizierung von RTG, RMG und STS Kranen in salzhaltiger Umgebung wird die U35 Stromschiene mit Aluminium/Edelstahl-Leiter verwendet. Diese kostengünstige Alternative zur Kupferschiene hat weltweit ihre Verschleißfestigkeit und Beständigkeit bewiesen. VAHLE bietet für jede Anwendung die passende Stromschiene. Unsere nach DIN VDE 0100 ausgeführten, berührungsgeschützten Systeme können mit beliebiger Polzahl zusammengestellt werden. Um Vereisungen vorzubeugen, sind die isolierten Stromschienen beheizbar. Auch unter großer Hitze stellen sie eine zuverlässige Energieübertragung sicher. Die Systeme sind als wärmebeständige Ausführung verfügbar. U25 und U35 sind sogar als Hochtemperaturvariante für feuchte, salzhaltige Luft geeignet. vPOWER U15 | U25 | U35 Material: Kupfer, Alumnium-Edelstahl
ATEX-Motoren-Klemmbretter

ATEX-Motoren-Klemmbretter

Ex-geschützt 500V bis 1375V nach ATEX 100 mit Schlitzbolzen
Multiflex-Systeme, Sichere Klemmung der Bauteile bei Drehung

Multiflex-Systeme, Sichere Klemmung der Bauteile bei Drehung

Projekt Beschreibung Sichere Klemmung der Bauteile bei Drehung der Gestelle um 180° ---------------------------
Poller Modell PLANUS - 70x70 mm mit Bandstahlaufsatz

Poller Modell PLANUS - 70x70 mm mit Bandstahlaufsatz

Poller 70x70 mm, mit aufgesetztem Bandstahl 70x5 mm, ortsfest, herausnehmbar oder klappbar durch DIN-Dreikant, Höhe über Flur 900 mm